PHYSICAL REVIEW E

VOLUME 49, NUMBER 4

APRIL 1994

Estimation of productivity, efficiency, and entropy production for cyclic separation processes
with a distributed working fluid

Vladimir A. Kazakov and R. Stephen Berry
Department of Chemistry and the James Franck Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
(Received 19 April 1993)

The upper bound on average productivity and efficiency and the lower bounds on entropy production
of an irreversible cyclic separation process with space-variable temperature and chemical-potential reser-
voirs are calculated via the generalized formalism of finite-time thermodynamics. The working fluid is
described by partial differential equations, containing controls and parameters in the boundary condi-

tions.
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I. INTRODUCTION

Some of the most useful and important results of ther-
modynamics are criteria of performance of real processes,
and the natural limits which those real processes may at-
tain. These limits and the corresponding regimes of
operation that yield near-optimal performance serve as
patterns for designing the most effective technological
schemes. Thermodynamics creates a bridge between sci-
ence and engineering in this context; the derivation of cri-
teria and limits, and the demonstration of the feasibility
of their evaluation, come from the science side, and their
application to the design of real systems and processes
fall to engineering to implement. Here we determine cri-
teria and limits of performance and demonstrate the
feasibility of their evaluation for an important class of
processes, namely cyclic separation processes. This
work, in effect, builds the scientific side of the bridge and
brings the subject to the stage at which it can be applied
in engineering contexts.

The simplest, best understood criteria of performance
come from classical thermodynamics. These are Carnot
efficiencies, based on the performance of idealized, rever-
sible processes, for which the duration of the process is
infinite and the fluxes go to their limit of zero. The rever-
sible model indeed provides unassailable but not neces-
sarily useful criteria, simply because we normally design
processes specifically to yield products at a predeter-
mined rate. The constraint of a fixed, nonzero rate (or a
minimum rate) sometimes imposes lower bounds to losses
that reduce the optimal performance of a system well
below the Carnot limit. Finite-time thermodynamics has
been developed to provide limits of performance (or
sometimes estimates of those limits) for processes operat-
ing within finite intervals or at a nonzero rate. Both cri-
teria and limits have been obtained for a variety of sys-
tems [1-21,23-27]. Most of these results have been for
engines of one or another sort. The criteria have includ-
ed not only efficiency but also average power, entropy
generation, loss of availability, and even net revenue.

In most cases, finding the pathway in terms of time and
the control variables of the system has entailed solving an
optimal-control problem. Moreover these have mostly
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been of the so-called averaged type, that can be solved
fairly easily. All the results cited except those in [16]
were obtained for simplified, lumped-parameter models,
without taking into account any effects of distributions of
values of the variables. Here we address one generic class
of processes, probably the furthest from optimal in its
operation among all major classes of processes used in in-
dustry, in terms of thermodynamic criteria. It is well
known that industrial separation processes are carried
out very inefficiently from a thermodynamic viewpoint.
The diffusive-mechanical, noncyclic separation process
has been considered in [6,14,21]. Heat-driven separation
processes were analyzed [17] and bounds, analogous to
the bounds of the irreversible heat engine, were obtained
for distributed systems, i.e. for systems with nonuniform
values of their intensive variables. The cyclic separation
processes were analyzed in [18,20] in the framework of
the lumped-parameter model.

In this paper we consider heat-driven cyclic, diffusion-
based separation processes. They differ from heat engines
because the driving force of these processes is not only
the temperature gradient but also the chemical potential
gradient between the working body and reservoirs; more-
over entropy production due to both heat and mass
transfer is taken into account. This is a rather general
type of diffusion-heat pump system which includes indus-
trial absorption-stripper separation processes and some
transport processes in biological systems. As a model we
take the absorption-stripping process, which makes our
problem no less general. Such a process is shown
schematically in Fig. 1. The separation agent (liquid ab-
sorbent) circulates in a closed loop. It cools out and ab-
sorbs the key component from the gas mixture during
contact in the absorber and heats up and recovers the ob-
jective component in the stripper during contact with
stripping vapor. We will designate the source of the in-
put gas and the receiver of the output vapor as reservoirs,
and the absorbent in analogy with heat engines as the
working body. The working fluid is described by the
equations of a viscous, nonisothermal two-component
fluid. Boundary conditions for these equations contain
switching controls v,(¢) and v,(z). These functions of
time ¢ regulate the finite-rate heat and mass transfer be-
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FIG. 1. The scheme of absorption-stripping separation pro-
cess.

tween the working fluid and two reservoirs. When
v,(¢)=1 the reservoir with high temperature and low
chemical potential and the working fluid are in contact
and exchange energy and substance; when v,(¢)=0 there
is no exchange between them. When v,(¢)=1 the reser-
voir with low temperature and high chemical potential
and the working fluid are in contact and exchange energy
and substance; when v,(¢#)=0 there is no exchange be-
tween them. We assume here that v (t)v,(¢)=0. The as-
sumption implies that the working fluid cannot be in con-
tact with two reservoirs simultaneously. The initial and
final states of the working fluid need not be equilibrium
states. We will optimize our objectives on the set of the
weakly periodic processes which are defined as processes
for which E(0)=E(7), K(0)=K(7), S(0)=S(7), and
G (0)=G (1), where E(t), K (t), S(t), and G (¢) are the to-
tal internal and kinetic energy, total entropy, and total
mass of the working fluid, and 7> 0 is the period of the
process. In a weakly periodic process, the integral values
of extensive variables are the same at the beginning and
end of each “cycle” but the local values of these quanti-
ties need not be the same. Hence a process which in-
volves turbulent flow can be weakly periodic.

The bounds are obtained in algorithmic form; that is,
the complicated variational problem, not solvable by the
standard methods, is transformed into set of nonlinear
algebraic equations that can be solved easily via routine
numerical methods.

II. DESCRIPTION OF THE MODEL

The distributed-parameter irreversible cyclic separa-
tion process is described by the equations [22]

S 8 =
at+8§j (pu;)=0,
3 a _
3t (pc)+ 3, (pcuj+n;)=0,
1
du; du; 3 o
Pl T3, =E(0ik—1’) ,
ds 3s du, 3 3
240, 2L =, —— % (g —pun.)—n. K
ot U agk ] O ik agk aé', (ql #nl) n; a§, ’

and the boundary conditions for gas-liquid problem are
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q;v;=Qu,

n;v;=Nv ,

0','jVj=PVi, l=1,2,3 .

This and further summation is understood over the re-
peated indices. The following analysis is not sensitive to
the form of boundary conditions. The second and fourth
may have different form, e.g., nxv =0 for the liquid-solid
problem. However, the first and third conditions are gen-
eral: they specify the local balance of heat and mass. The
quantities p(t,§), c(t,£), s(t,§), and u;(t,£), i =1,2, and
3, are the total mass density, concentration of the key
component, entropy density, and velocity, respectively;
T, p, and p are the temperature, pressure, and chemical
potential, and

du; Odu, 2 Oy du,;

= - ___8,' — |+ —"_'81'
|3, "o, 3%% g, | TEag, O

T ik
is the viscous stress tensor, 17 and § are given positive
constants, §;;=1 when i=j, §;=0 when i#j, i and
j=12, and 3, and i =1,2, and 3. The heat and mass
fluxes in the fluids are g; and n;. The equation system (1)
is closed with the help of given functions T=T(s,p,c),
p=pls,p,c), pu=ulsp,c), q;(T,VT,c,Vc), and
ni(T,VT,c,Vc). In (2), D;(t,§) and P(t,§) are the given
boundary velocity components and the pressure on the
boundary, 912 is the boundary of the working fluid, v(¢,£)
is the outer normal vector at the point £E€9Q, and v (¢,£)
is a switching function regulating heat and mass transfer
between the working fluid and two reservoirs. It is as-
sumed that it consists only of the time-dependent switch-
ing function v (¢) on the contact surface in the stripper,
and v,(t) at the contact surface in absorber. That is, it
has the form v (z,)=uv,(t) when € A4,, v(t,£)=v,(t)
when §€ 4, and v(t,§)=0 when £€ A, U 4, where 4,
and A; are the parts of the boundary 9€(¢), in contact,
respectively, with the stripper and absorber reservoirs.
Functions Q and N have the form

= |1 Hr _p
Qe =Ae |~ |Yor | T |
3)
—y |L_1 Er _p
Ne=eo |7 =7 |The |7 7
When E€ 4, TR(E)=T,(&), ug(&)=p,(£), Agx(€)

=A(E), agr(&)=a,(§), and kg(£)=k,(£), and when
E€EA,, Tr(E)=T,(&), pgr(&)=p,(&), Ag(E)=A, (&),
ag(€E)=a,(E), and kgx(&)=k,(£). Here A (E), A (E),
a(&), a,(&), k&), and k,(£) are coefficients; T, (&),
T,(€), u(€) and p, (&) are temperatures and chemical
potentials of reservoirs.

Controls v () and v,(¢) are considered admissible if
0=v,(¢)=1,0=v,(¢)<1, and v, (¢)v,(¢)=0 and there ex-
ists a solution of (1) and (2) satisfying the conditions
E(0)=E(7), K(0)=K(7), S(0)=S(7r), G(0)=G(1),
c(1,§)20, and p(1,£)20. Here E(1)= [ epdE and
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K(t)= f olpu 2/2)d & are the total internal and kinetic en-
ergies, respectively, S(z)= f oSpd§ is the total entropy,
and G (1)= [ (pd¢ is the total mass of the working fluid.
The given function e(s,p,c) is specific internal energy of
absorbent.

The average productivity of the system is defined as a
generalized power, i.e.,

S
=4,

the average heat consumption

S, vaN,da ]dt , @)

1 r
Q= Tfo fASvSQsda dt | (5)
the efficiency is
:_?i
T @ ’
and average entropy production is
=Lrlr 1_1 B _p
S—Tfo [fASv, 0, T T +N, T T da
1 1
+fASva Q. T T,
Hq _&
+ - dt 6
N, T T dal (6)

consisting of both heat and mass transfer contributions.
Here 7> 0 is the period time.

Problem 1: to find an upper bound of 7, on the solu-
tion of (1) and (2) which is valid for all admissible con-
trols.

Problem 2: to find an upper bound of efficiency M

with given productivity. This is equivalent to calculation
of the lower bound of @ on the solution of (1) and (2)
which is valid for all admissible controls such that the
average productivity has a given value P:P="%.

Problem 3: to find a lower bound of §,;, on the solu-
tion of (1) and (2) which is valid for all admissible con-
trols such that the average productivity has a given value

B:P=2.

III. ENTROPY, ENERGY, AND MASS BALANCES
AND CONSTRAINT BREAKING

Any solution of (1) and (2) with admissible control
obeys the following equations of heat, entropy, and mass
balance for the working body:

fof fA Qav,,da+fA Q,v,da |dt+81=0, (7a)
T Qs Nsp'
£ |5 e
S QT"—N“” da |di+8=0, (7b)

N

[, Noda+ [ Ny,da ]dt =0, (7c)
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where

1
2T

L £
T

au,- + auk 28 aul 2
3, 3 ko

aul

9§

are the total heat and entropy production in the working
fluid during the cycle.

Using expressions for Q and N, constraints (7a)-(7c)
can be rewritten in the form

IN [L Qu,da+ [ Qauada]dt+5%=o, (8)

2
dédt (7e)

T Qsz st
fO fASvS T+ = +qu1s_Nsu25_Nstas da
) s
Q;  N;
+anva Xa +7ﬁ(~a_+Qaula ——NauZG
—N,Q,a, |da |dt+82=0, (8b)
INTRAZ S Navada]dt=0. (8¢c)
where
T S PR G
i i k,’ i i Ai, l_kl-)\’-—ai ’
u :i u E'I‘ 1 a,s
1i T ’ 2i T ’ ’

The average entropy production can be rewritten as

1 pr Qs2 st
= ._+ —I)F
8 Tfo fASUS 1% 2a,N,Q, |da
o N
+anva T + 3 —28,N,Q, |da |dt .

9)

Instead of solving problems 1 and 2 directly we will
solve them by breaking constraints, and replacing the
problems at each stage with problems with the same ob-
jective and extended set of admissible states. Let us illus-
trate it for problem 1.

First we consider problem 1': to find an upper bound
of (4) based on the solution of system (7a)-(7d) over the
range of admissible parameters. All admissible solutions
obey (7a)-(7d), but (1), (2), and (7a)-(7d) are not
equivalent. Egs. (7a)-(7d) can have additional solutions
within the admissible range of parameters. Therefore any
solution of problem 1’ is greater than or equal to the solu-
tion of problem 1. In other words the solution of prob-
lem 1’ gives an upper bound for the solution of problem
1.



49 ESTIMATION OF PRODUCTIVITY, EFFICIENCY, AND. .. 2931

Second we break the constraints (7d), T=T(s,p,c),
and p=u(s,p,c) and consider fluxes Q and N between
working body and reservoirs and total entropy and heat
production in the working fluid and heat and mass pro-
duction 8, and 6, as new controls. Thus we obtain an es-
timate of (4) by solving the simplified optimal control
problem 1"”: to maximize (4) subject to constraints
(8a)—(8c) over the set of controls v, v,, N, Q, §,, and §,.

Problem 2" is formulated similarly to minimize (5) sub-
ject to (8a)—(8c) and

%f; [anvaNada ]dt=SB )

with respect to v,, v,, N, Q, 8;, and §,. And prdblem 3"
is to minimize (9) subject to the same constraints as prob-
lem 2".

|

IV. LAGRANGE MULTIPLIERS
AND SOLUTION OF AVERAGED PROBLEMS

Problems 1''-3" are typical averaged problems. In-
stead of using the general apparatus of averaged
optimal-control problems [5,18], we will derive the neces-
sary conditions of optimality directly for our problem,
which is much easier in our particular case. We will use
the method of Lagrange multipliers.

Let us note that for problem 1" the optimal v,(¢) or
v,(2) can take the value O or 1 only because problem 1" is
linear with respect to v. Another feature of this problem
is that the objective and constraint for two different v (¢)’s
which have equal total durations of contacts with both
reservoirs are equal. Therefore we can take
v,(1)=1,v,(¢)=0 for t €[0,7,], and v,(2)=0,v,(z)=1 for
t €[ 7, 7] without loss of generality, and carry out max-
imization on 7, instead of maximization on v,,v;.

The Lagrange functional R of problem 1’ has the form

. Ne
R(}\'l,kz,}\.:;,N,Q,T]):Tl[fA NG+A‘1 g +—I‘(,__,L+Qaula—Nau2a—NaQaaa +A’2QG+A’3Na da’
Q) N 249 82
+r=m) 1 [, A T Qs Nouy, =N,0.8, | +79Q, +AsN, |da (+A 814,87 .
(10)

Here A,, A,, and A, are Lagrange multipliers.

The maximum of R with respect to §, and 8, is attained for §,=0, 8,=0, and A, <0, and A, <0 (otherwise R is not

bounded).
The condition of maximum R on 7, gives
Q: N _
[, [N+ Tt T Qatha—Natia, ~NoQully | +1:Q, +AN, |da
a a a
Q) N}
zfA A’l X +?+quls_Nsuzs _Nstas +)\'2QS+A’3NS da ) (11)
s s s
and with respect to variables N,(z,£) and Q;(t,§), i =a and s can be solved analytically:
N‘ _ [2+2}\.3+ﬁaxa7\,2+7\.1(&a7»au1a —2u2,, )]Ea
¢ }"loa ’
. [2}"2+aaiga +Xa}"37€a +7\'1( —aaEauZH +2u1a )]7:1
“ )"loa
~ ~ ~ (12)
_ [2)"3+asls)"2+}"l(aslsuls ~2u2x )]ks
: A'los ’
._ [2}»2+?15ES +XSA'3ES +}\.1( _asEsqu +2u 1s )]7;
: }‘105
where

0,=a’kX;,—4, i=a,s .

Substitution of (12) into (8a)—(8c) and (11) gives optimality conditions for problem 1"’ in the form of closed set of four
equations for finding A, A,, A;, and ¥ =7, /7 (note that these equations do not depend on 7; that is, the optimal regime
is universal for all values of 7):
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(B, —B,)A3+(C, — C,)AJ— (D, — D, )A2+(F, — F, )A,A,

+(M, — M)A Ay +(L, —L,)A;Ay+2B, Ay +F,A,+ M, A, +B, =0

[¥B,+(1—y)B, A3+ [yC, +(1—¥)C; 1A} +[yD, +(1—y)D  ]A?
+[vF, +(1=y)F,JAA;+2B,yA;+F,yA,+yB, =0,

[vF,+(1—=y)F; A +2[yC, +(1—y)C Ay +[yL, +(1—y)L,JA, +yF,=0, N
2[yB,+(1—y)B, Ay +[yF,+(1—y)F, A, +[yM, +(1—y )M, A, +2yB,=0 ,
where y €[0,1], ll <0, A, <0, and
Nufi+kus —ak R uy,
B,= f ——da, C;= f da, D,:—fAi ) da ,
F = f kakda,L f~2u|,ooiku2, _f~aku1, 2u2‘da.
The bound on P is expressed in terms of the roots of (13) AT, A3, A}, and y*:
_ Y*[2B,(1+AS)+F, A + M, AT] 14

max - ’
A

which corresponds to the efficiency
Y*(2B,(1+A)+F A +M,AT)

m= : (15)
(1—y* N FAL +2C A% +LAY)

In the general case, the nonlinear set (13) can be solved only numerically. However, the case in which reservoir pa-
rameters T, u;, and i =a, and s do not depend on £, the coefficients of mass and heat transfer for absorber and stripper
are constant and equal (a, =a;=a, k, =k, =k, and A, =A;=A), and the contact areas are equal, i.e., 4,= 4, can be
solved analytically. The followmg expressnon is obtamed for the bound on 7:

Ex(ula——uls )zAa

Prax= T o7 = = > (16)
2a@rk(u,, —u ) +2k(uy,—u,,)+2vVDS)
with efficiency
Uy ~ Uy
= — — , a7
K Xuy,—uy)?  Kaluy,—ug) |2
(Uy—uqpq )+ z 3 ( )
(uzs uth) Uy Uy,
where

DS=Fk[k(uy—uy, P+ uy, —uy P+ Rak(uy —uy Nug,—uy)] -

For problem 2", in a similar way, we obtain optimality conditions in a form of a nonlinear set of equations with
respect to A, A,, A3, Ay, and y:

B,A3+(B,—B A3+ (C,—C,)A3—(D, —D,)A}+ 2B, A A+ F A+ (F, —F)AyAs
+(—P+M)MA+ (M, —M)AMA;+(L, —L)AA,+F,A,+2C, A+ L, A+ C, +F,A,=0
yB Ai+[yB,+(1—y)B, A3+ [yC,+(1—y)C, A3+ [yD, +(1—y)D, 1A}
F2¥B, A A+ Y F MM+ v F (A3 +A)+H [y F, +(1—y)F JAA3+2C,vA,+yC, =0
YF, A+ [yF,+(1—y)F, A3 +2[yC, +(1—y)C, ]\, +[yL, +(1—y)L, A, +2yC, =0 e
2yB Ay +2[yB, +(1—y)B, Ay +[vF, +(1—y)F, 1A+ [y M, +(1—y)M, A, +yF, =0,
Y[2B,(Ag+A3)+F, A+ M, A +F,]=PA, ,

where A; <0, A, <0, A3, and A, are Lagrange multipliers.
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The bound on @ is expressed in terms of the roots of (15) A}, A3, A3, A}, and y*:

_ (1—p*NFA$+2CA3 +LAL)

Q.= , (19)
min A,l‘
and the bound on efficiency is
ATP
(20)

Mows ™ (1= " WE A +2C A +LAD)

Similarly problem 3" is reduced to the set of equations for A; <0, A, <0, A;, A4, and y €[0,1]:
B A2+ (B, — B, )A2+(C,—C,)A3— (D, —D;)A2+2B,AsA,+ F A A4
+(F, —F, Ay +(—P+M,AA,+ (M, —M,)A A+ (L, —L A A, +A,P=0 ,
yB, A2+ [yB, +(1—y)B, A2 +[yC,+(1—y)C,]A3+[yD, +(1—y)D, JA3+2y B, A3Ay + Y F, A Ay + Y M, (A3 +1,)
+(1—y)M A+ [vF, +(1—y)F,JAA;+[yL, +(1—y)L,]A,—2[D,y +(1—y)D,]A,=0 ,

yF A+ [yF,+(1—y)F,]A;+2[yC, +(1—%)C, 1A, +[yL, +(1—y)L ], =0, en
2yB,A,+2[yB,+(1—7)B 1A+ [yF, +(1—y)F, ]\, + [y M, +(1—y)M,]A,=0,
Y[2B,(Ag+A3)+F, A+ M A ]=P(—1+14,) ,
and the bound is expressed as
Spin=—[7*(B,(Af +A3)?+C, A3 — D AP+ (F, A +2M AT YA +A%)+L,AAS)
+(1—y*)BAL P+ C A3 DAY +(F,A8 +2M AAS 1/(—1+A} )2 . (22)

Analytical expressions for the solutions of problems 2" and 3" also have been obtained, only for the cases of equal
and constant coefficients of heat and mass transfer, equal contact surfaces in absorber and stripper, and space-
independent T;, u;, and i =a, and 5. For this special case these solutions coincide, but they do not in the general case.
In the optimal regime, the working body spends equal time in the absorber and stripper (y*=0.5), and the mass fluxes

are

x &
—Qa =Qs =I ula_uls_zas’B_

here $=P/A4,, and
- 43

(ula _uls_Za%)z— 828 [2%“"?(“25_“2“)]

172

- ; (23)
kA

(24)

Xluy,—uy—20P+ |[(u,—u,—2aB)*—

If B—0 the efficiency tends to the reversible value
"71m“—’(u1a—>u1s)/(uzs"““za)-

V. ILLUSTRATIVE CALCULATIONS
AND DISCUSSIONS

We computed bounds @uins 71__» Smins and Py, for

the absorption stripping of CO, by monoethanolamine
solution from the waste industrial gases [19,20]. In this
process T, =315 K, T, =393 K, and typical values of the
concentrations of the key component in reservoirs are
¢, =0.22 mol/mol, C;=0.80 mol/mol; of the pressures
P,=121.2 kPa, P, =151.5 kPa; of the areas 4, = 4, =25
m?, and typical kinetic coefficients are a,=a;=0,
A,=A,=5X10° (kI)s"'M"2K, and k=5X10"*

alle
> lﬁz

777 -
[2§f§+E(u2s—uZa)]] I

r

K(kmol)> (kJ)"!s7'M ™2 The following expression is
used for calculation of the chemical potential of the reser-
voirs

w; =pXT;)+RTInc;+RT;InP;, i=a,s ,

where puX(T;) is a standard chemical potential of the key
component in the gas state, and R is a gas constant. It is
assumed that uX(T;) /T, is constant.

Table I shows the parameters of the regimes with max-
imum efficiency (minimal heat consumption), maximal
productivity, and the real process.

This work is illustrative of a transformation worth not-
ing. The solution to the general problem posed here is
expressed in a practical, computable form, but as an algo-
rithmic rather than an analytic expression. A “solution”
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TABLE 1. Parameters of the regimes with maximum
efficiency.

Max

Parameters Real process Max efficiency productivity
P (kmol/s) 0.05 0.05 0.166
Q kJ/s) 123 1.556x10° 19.7X10°
1, (kmol/kJ) 0.001 3.2X107° 0.84 X103

to a general problem in physics is a statement, preferably
terse, of how to find numerical values of physical vari-
ables for all possible cases falling in some domain of va-
lidity. Traditionally such ‘solutions” have been ex-
pressed in terms of functions, preferably in a closed form,
stated in the language of conventional mathematics.
Here the solution is general for its domain of validity but
is expressed in terms of a set of commands for a comput-
er, rather than in terms of traditional mathematical sym-
bols. In one sense this distinction is trivial; in another
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sense, it reflects a significant enlargement of what we
mean by ‘“‘solving” a physical problem.

This is by no means a unique or new phenomenon. Al-
gorithmic solutions are appearing ever more frequently,
as people find such solutions to problems that have not
yielded analytical solutions. We simply raise this point to
sensitize the reader to the rich, new direction which
scientific problem solving has taken. Insofar as a “solu-
tion” implies a useful recipe from which the outcome of
any relevant case can be determined quantitatively, the
power of modern computers has made the algorithmic
solution just as valid and powerful as the traditional ana-
lytic solution. In some situations, algorithmic solutions
are more efficient and provide more insight than their an-
alytic counterparts.
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